Royce' Methodology

Software Engineering I Lecture 20

Bernd Bruegge Applied Software Engineering Technische Universitaet Muenchen

1

Royce's Methodology

- Demonstration-based approach
 - Identify performance issues and assess intermediate artifacts.
- Architecture-first approach
 - Focus on critical use cases, architecture decisions, and lifecycle plans before committing resources. Address architecture and plan together
- Iterative life-cycle process
 - Each iteration should focus on a specific risk and move the requirements, architecture, and plan in a balanced manner
- Component-based development
 - Minimize human generated lines of code. Use commercial components.
- Change management environment
 - Automate processes to deal with changes introduced by iterations.
- Round-trip engineering
 - Couple models and source code, decreasing cost of change
- Objective quality control
 - Use metrics and quality indicators to assess progress
- Visual modeling languages.

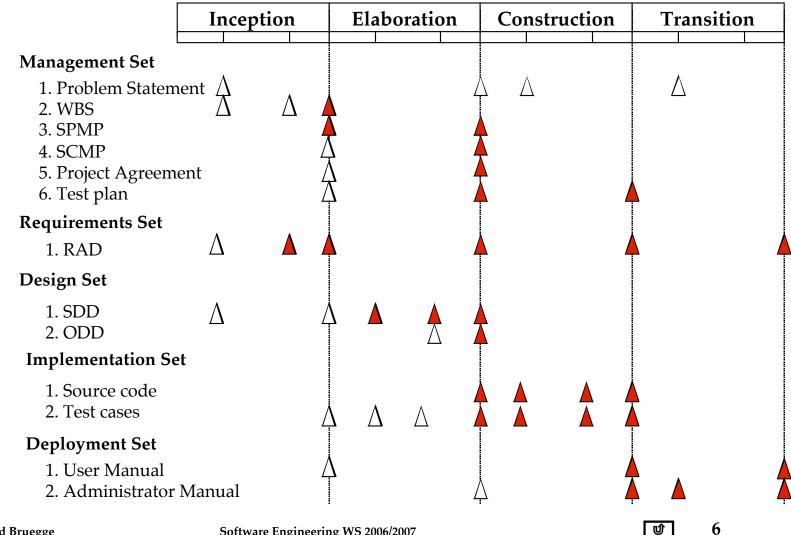
© 2006 Bend Sees Visual languages to support modeling and documentation.

How much Planning? (Royce)

- •The project plan is developed iteratively like the software
 - The plan is refined as the stakeholders increase their knowledge in the application and solution domain
- Planning errors are treated like software defects
 - Early fixing means less impact on project success.
- WBS is organized around software life cycle activities
 - The first level elements in the WBS represent workflows (i.e., management, requirements, design,...).
 - The second level elements represent phases (i.e., inception, elaboration, construction, and transition).
 - The third level elements correspond to artifacts produced during the phases.
- Estimation:
 - Compute the initial estimate with a model
 - Refine it with the project manager, developers, and testers
- •After each iteration, revise plan and estimate to reflect the performance of the project and to address planning errors.

How much Reuse? (Royce)

- Buy versus build decisions are treated as risks that should be confronted early in the life cycle (e.g., in the first iterations of the elaboration phase).
 - When components are reused in more than one project, the return on investment can be further increased.
- •Key priniciple: Minimize the amount of human-generated source code
 - Reuse commercial components
 - use code generation tools
 - Use high-level visual and programming languages.
- Reuse is treated as a return on investment decision which decreases development time.
 - Mature components and tools also reduce time to repair defects
 - Immature components and tools increase quality problems drastically to off-set any economic benefit.


How much Modeling? (Royce)

- Modeling artifacts based on the activities of the Unified Process
 - Management Set:
 - Artifacts associated with planning and monitoring activities
 - Ad hoc notations to capture the "contracts" among project participants and other stakeholders
 - Problem statement, SPMP, SCMP and status descriptions
 - Requirements set
 - Visionary scenarios, prototypes for user interfaces, requirements analysis model.
 - Design set
 - Software architecture and interface specifications
 - Implementation set
 - Source code, components, executables
 - Deployment set
 - Deliverables negotiated between project manager and client
 - Executable, user manual and administrator manual
- Test artifacts are part of each of the above sets.

Artifact Road Map (Royce)

The diagram of all artifacts sets generated over the phases of a software system

How much Process? (Royce)

- Scale (Most important factor in determining the process)
 - Smaller Projects (1-10 participants)
 - Require much less management overhead
 - Performance depends on technical skills of participant and on tools
 - Focus on technical artifacts, few milestones, no formal processes
 - Larger Projects (more than 10 participants)
 - Management skills of team leaders becomes primary performance bottleneck
 - Well-defined milestones, focus on change management artifacts
- Stakeholder cohesion
 - Cooperating set of stakeholders: flexible plan, informal agreements
 - Contention among stakeholders: formal agreements, well-defined processes
- Process flexibility
 - Rigor of the process definition impacted by rigor of contract
- Process maturity
 - Organizations with mature processes are easier to manage
- Architectural risk
 - Demonstrate feasibility of the architecture before full-scale commitment
- Domain experience
 - Domain expertise shorten the earlier phases of the life cycle.

How much Control? (Royce)

- 3 management metrics and 4 quality metrics:
- Management metrics:
 - Work. How many tasks have been completed compared to the plan?
 - Costs. How many resources have been consumed compared to the budget?
 - Team dynamics. How many participants leave the project prematurely and how many new participants are added?
- Quality metrics:
 - Change. How many change requests are issued over time?
 - Breakage. How much source code is reworked per change?
 - Rework. How much effort is needed to implement a change?
 - Mean time between failures. How many defects are discovered per hours of testing?

Summary of Royce's Methodology

Issues	Methods
Planning	Evolutionary WBS
	Initial model-based estimation of cost and schedule
	(COCOMO II)
	Iteration planning, including all stakeholders
Modeling	Critical use cases and driving requirements first
	Architecture first, UML, Round-trip engineering
Reuse	Buy vs. build decisions during elaboration.
	Focus on mature components
Process	Scale, Stakeholder cohesion, Process flexibility,
	Process maturity, Architectural risk, Domain
~	experience
Control	Management indicators (work, cost, team dynamics)
	Quality indicators (change traffic, breakage, rework,
© 2006 B	MTBF) Software Engineering WS 2006/2007
© 2006 Bernd Bruegge	Software Engineering WS 2006/2007

References

Summary

Backup and Additional Slides

